PZ248E
P-56x Nanopositioners
User Manual

Version: 1.0.0 Date: 22.11.2013

This document describes the following products:

- **P-561**
 PIMars XYZ Nanopositioning System
 P-561.3CD/.3CL, 100 µm × 100 µm × 100 µm
 P-561.3DD, 45 µm × 45 µm × 15 µm, Direct Drive

- **P-562**
 PIMars XYZ Nanopositioning System
 P-562.3CD/.3CL, 200 µm × 200 µm × 200 µm

- **P-563**
 PIMars XYZ Nanopositioning System
 P-563.3CD/.3CL, 300 µm × 300 µm × 300 µm
 .3CD/.3DD with Sub-D connector
 .3CL with LEMO connectors
Physik Instrumente (PI) GmbH & Co. KG is the owner of the following trademarks:
PI®, PIC®, PICMA®, PILine®, PIFOC®, PiezoWalk®, NEXACT®, NEXLINE®, NanoCube®, NanoAutomation®, Picoactuator®, PInano®

The products described in this document are in part protected by the following patents:
German patent no. 10021919C2
German patent no. 10234787C1
German patent no. 10348836B3
German patent no. 102005015405B3
German patent no. 102007011652B4
US patent no. 7,449,077
Japanese patent no. 4667863
Chinese patent no. ZL03813218.4

© 2013 Physik Instrumente (PI) GmbH & Co. KG, Karlsruhe, Germany. The text, photographs and drawings in this manual are protected by copyright. With regard thereto, Physik Instrumente (PI) GmbH & Co. KG retains all the rights. Use of said text, photographs and drawings is permitted only in part and only upon citation of the source.

Original instructions
First printing: 22.11.2013
Document number: PZ248E, CBo, Version 1.0.0

Subject to change without notice. This manual is superseded by any new release. The latest release is available for download (p. 3) on our website.
Contents

1. **About this Document**
 1.1 Goal and Target Audience of this User Manual .. 1
 1.2 Symbols and Typographic Conventions ... 1
 1.3 Other Applicable Documents .. 3
 1.4 Downloading Manuals .. 3

2. **Safety**
 2.1 Intended Use ... 5
 2.2 General Safety Instructions .. 5
 2.3 Organizational Measures ... 7

3. **Product Description**
 3.1 Model Overview .. 9
 3.2 Product View ... 10
 3.3 Product Labeling .. 11
 3.4 Scope of Delivery .. 12
 3.5 Recommended Piezo Controllers .. 13
 3.6 Technical Features .. 13
 3.6.1 PICMA® Piezo Actuators ... 13
 3.6.2 Flexure Guides ... 14
 3.6.3 Capacitive Sensors ... 14
 3.6.4 ID Chip (Only Models With Sub-D Connector) 14

4. **Unpacking** .. 15

5. **Installation**
 5.1 General Notes on Installation ... 17
 5.2 Connecting the P-56x to the Protective Earth Conductor 19
 5.3 Mounting the P-56x .. 21
 5.4 Affixing the Load ... 23
 5.5 Connecting the Adapter Cable to the P-56x (Only P-56x.3CL Models) 25

6. **Start-Up and Operation**
 6.1 General Notes on Start-Up and Operation ... 27
 6.2 Operating the P-56x ... 29
 6.3 Discharging the P-56x .. 30
7 Maintenance
 7.1 General Notes on Maintenance ... 31
 7.2 Packing the P-56x for Transport ... 31
 7.3 Cleaning the P-56x .. 33

8 Troubleshooting ... 35

9 Customer Service ... 37

10 Technical Data
 10.1 Specifications .. 39
 10.1.1 Data Table ... 39
 10.1.2 Maximum Ratings .. 40
 10.2 Ambient Conditions and Classifications ... 41
 10.3 Dimensions .. 42
 10.4 Torque for Stainless Steel Screws (A2-70) ... 43
 10.5 Pin Assignment ... 44

11 Old Equipment Disposal ... 47

12 EC Declaration of Conformity .. 49
1 About this Document

In this Chapter

Goal and Target Audience of this User Manual .. 1
Symbols and Typographic Conventions .. 1
Other Applicable Documents ... 3
Downloading Manuals .. 3

1.1 Goal and Target Audience of this User Manual

This user manual contains the necessary information for the intended use of the P-56x
(x stands for the different models, p. 9).

Basic knowledge of control technology, drive technologies and suitable safety
measures is assumed.

The latest versions of the user manuals are available for download (p. 3) on our
website.

1.2 Symbols and Typographic Conventions

The following symbols and typographic conventions are used in this user manual:

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dangerous situation</td>
</tr>
<tr>
<td>If not avoided, the dangerous situation will result in minor injury.</td>
</tr>
<tr>
<td>➢ Actions to take to avoid the situation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dangerous situation</td>
</tr>
<tr>
<td>If not avoided, the dangerous situation will result in damage to the equipment.</td>
</tr>
<tr>
<td>➢ Actions to take to avoid the situation.</td>
</tr>
</tbody>
</table>
INFORMATION

Information for easier handling, tricks, tips, etc.

<table>
<thead>
<tr>
<th>Symbol/Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Action consisting of several steps whose sequential order must be observed</td>
</tr>
<tr>
<td>2.</td>
<td>Action consisting of one or several steps whose sequential order is irrelevant</td>
</tr>
<tr>
<td>▪</td>
<td>List item</td>
</tr>
<tr>
<td>p. 5</td>
<td>Cross-reference to page 5</td>
</tr>
<tr>
<td>RS-232</td>
<td>Labeling of an operating element on the product (example: socket of the RS-232 interface)</td>
</tr>
</tbody>
</table>

⚠️ ⚠️

Warning signs affixed to the product that refer to detailed information in this manual.
1.3 Other Applicable Documents

The devices and software tools which are mentioned in this documentation are described in their own manuals.

The latest versions of the user manuals are available for download (p. 3) on our website.

<table>
<thead>
<tr>
<th>Product</th>
<th>Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-500 modular piezo controller</td>
<td>PZ62E</td>
</tr>
<tr>
<td>E-509.C3A control module for capacitive sensors</td>
<td>PZ77E</td>
</tr>
<tr>
<td>E-503 3-channel amplifier</td>
<td>PZ62E</td>
</tr>
<tr>
<td>E-505 single-channel high-performance amplifier</td>
<td>PZ62E</td>
</tr>
<tr>
<td>E-517 interface and display module</td>
<td>PZ214E</td>
</tr>
<tr>
<td>E-712 digital piezo controller</td>
<td>PZ195E</td>
</tr>
<tr>
<td>E-725 digital piezo controller</td>
<td>PZ197E</td>
</tr>
<tr>
<td>E-761 digital piezo controller</td>
<td>PZ164E</td>
</tr>
<tr>
<td>P-5xx / P-6xx / P-7xx piezo positioning systems</td>
<td>PZ240E</td>
</tr>
</tbody>
</table>

1.4 Downloading Manuals

INFORMATION

If a manual is missing on our website or if there are problems in downloading:

- Contact our customer service department (p. 37).

The current versions of the manuals are found on our website. For some products (e.g. Hexapod systems and electronics that are delivered with a CD), access to the manuals is password-protected. The password is stored on the CD.
Download freely accessible manuals

2. Click Downloads.
3. Click the corresponding category (e.g. P Piezo Actuators, Nanopositioning & Scanning Systems)
4. Click the corresponding product code (e.g. P-561).
5. Click Documents.
 The available manuals are displayed.
6. Click the desired manual and save it on the hard disk of your PC or on a data storage medium.

Download password-protected manuals

1. Carry out steps 1 to 5 of the download process for freely accessible manuals.
2. Insert the product CD in the PC drive.
3. Switch to the Manuals directory on the CD.
4. In the Manuals directory, open the Release News (file including releasenews in the file name).
5. Find the user name and password in the User login for software download section in the Release News.
6. In the User login area on the left margin in the website, enter the user name and the password in the corresponding fields.
7. Click Login.
 The available manuals are displayed.
8. Click the desired manual and save it on the hard disk of your PC or on a data storage medium.
2 Safety

In this Chapter

Intended Use ... 5
General Safety Instructions .. 5
Organizational Measures .. 7

2.1 Intended Use

The P-56x is a laboratory device as defined by DIN EN 61010-1. It is intended to be used in interior spaces and in an environment which is free of dirt, oil, and lubricants.

Based on its design and realization, the P-56x is intended for fine positioning as well as the fast and precise motion of small objects. The specifications of the P-56x apply to horizontal mounting. The motion takes place in three axes horizontally and vertically.

The intended use of the P-56x is only possible in combination with suitable drive and control electronics (p. 13) available from PI. The electronics is not included in the scope of delivery of the P-56x.

The electronics must provide the required operating voltages. To ensure proper performance of the servo-control system, the electronics must be able to read out and process the signals from the capacitive sensors.

2.2 General Safety Instructions

The P-56x is built according to state-of-the-art technology and recognized safety standards. Improper use can result in personal injury and/or damage to the P-56x.

- Only use the P-56x for its intended purpose, and only use it if it is in a good working order.
- Read the user manual.
- Immediately eliminate any faults and malfunctions that are likely to affect safety.

The operator is responsible for the correct installation and operation of the P-56x.
The P-56x is driven by piezo actuators. Temperature changes and compressive stresses can induce charges in piezo actuators. After being disconnected from the electronics, piezo actuators can also stay charged for several hours. Touching or short-circuiting the contacts in the connector of the P-56x can lead to minor injuries. In addition, the piezo actuators can be destroyed by an abrupt contraction.

- Do not open the P-56x.
- Discharge the piezo actuators of the stage before installation:
 Connect the stage to the switched-off PI controller, which is equipped with an internal discharge resistor.
- Do not pull out the connector from the electronics during operation.

For stages with Sub-D connector:

Touching the contacts in the connector can lead to an electric shock (max. 130 V DC) and minor injuries.

- Do not touch the contacts in the connector.
- Secure the connector of the stage with screws against being pulled out of the controller.

If a protective earth conductor is not or not properly connected, dangerous touch voltages can occur on the P-56x in the case of malfunction or failure of the system. If touch voltages exist, touching the P-56x can result in minor injuries from electric shock.

- Connect the P-56x to a protective earth conductor (p. 19) before start-up.
- Do not remove the protective earth conductor during operation.
- If the protective earth conductor has to be removed temporarily (e. g. in the case of modifications), reconnect the P-56x to the protective earth conductor before starting it up again.

Mechanical forces can damage or misalign the P-56x.

- Avoid impacts that affect the P-56x.
- Do not drop the P-56x.
- Do not exceed the maximum permissible stress and load capacities according to the specifications (p. 39).
- Only hold the P-56x externally by the base body.
The P-56x is maintenance-free and achieves its positioning accuracy as a result of the optimum alignment of mechanical components and piezo actuators. Loosened screws cause a loss in positioning accuracy.

- Only loosen screws according to the instructions in this manual.
- Do not open the P-56x.

2.3 Organizational Measures

User manual

- Always keep this user manual available by the P-56x. The latest versions of the user manuals are available for download (p. 3) on our website.
- Add all information given by the manufacturer to the user manual, for example supplements or Technical Notes.
- If you pass the P-56x on to other users, also turn over this user manual as well as other relevant information provided by the manufacturer.
- Only use the device on the basis of the complete user manual. Missing information due to an incomplete user manual can result in minor injury and property damage.
- Only install and operate the P-56x after having read and understood this user manual.

Personnel qualification

The P-56x may only be installed, started up, operated, maintained and cleaned by authorized and appropriately qualified personnel.
3 Product Description

In this Chapter

Model Overview ... 9
Product View ... 10
Product Labeling .. 11
Scope of Delivery .. 12
Recommended Piezo Controllers .. 13
Technical Features .. 13

3.1 Model Overview

The following standard versions of the P-56x are available:

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-561.3CD</td>
<td>PIMars XYZ nanopositioning system with large travel range, 100 µm × 100 µm × 100 µm, capacitive sensors, parallel metrology, Sub-D connector(s)</td>
</tr>
<tr>
<td>P-561.3CL</td>
<td>PIMars XYZ nanopositioning system with large travel range, 100 µm × 100 µm × 100 µm, capacitive sensors, parallel metrology, LEMO connector(s)</td>
</tr>
<tr>
<td>P-561.3DD</td>
<td>PIMars high-dynamics XYZ nanopositioning system, 45 µm × 45 µm × 15 µm, capacitive sensors, parallel metrology, Sub-D connector(s), direct drive</td>
</tr>
<tr>
<td>P-562.3CD</td>
<td>PIMars XYZ nanopositioning system with large travel range, 200 µm × 200 µm × 200 µm, capacitive sensors, parallel metrology, Sub-D connector(s)</td>
</tr>
<tr>
<td>P-562.3CL</td>
<td>PIMars XYZ nanopositioning system with large travel range, 200 µm × 200 µm × 200 µm, capacitive sensors, parallel metrology, LEMO connector(s)</td>
</tr>
</tbody>
</table>
3.2 Product View

The figure serves as an example and can differ from your stage model.

![Product View Image]

Figure 1: Example of product view

1. Moving platform
2. Cable exit
3. Protective earth connection
4. Base body

X, Y, Z (Positive) directions of motion of the stage
3.3 Product Labeling

1. Product name
2. Serial number
3. Brand name
4. Country of origin
5. Manufacturer's logo
6. CE conformity mark
7. Manufacturer's address (website)
8. Disposal of used devices
9. Warning sign "Observe manual!"

Figure 2: P-56x: Type plate (example view)

Figure 3: P-56x: "Residual voltage" warning sign on connector

Warning sign "Residual voltage": Notice of risk of electric shock (p. 5)
3.4 Scope of Delivery

<table>
<thead>
<tr>
<th>Order Number</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-56x</td>
<td>Stage according to order (p. 9)</td>
</tr>
<tr>
<td>-</td>
<td>Transport lock, consisting of:</td>
</tr>
<tr>
<td></td>
<td>▪ Support frame</td>
</tr>
<tr>
<td></td>
<td>▪ 4 plastic screws</td>
</tr>
<tr>
<td>000036450</td>
<td>M4 screw set for protective earth, consisting of:</td>
</tr>
<tr>
<td></td>
<td>▪ 1 M4x8 flat-head screw with cross recess, ISO 7045</td>
</tr>
<tr>
<td></td>
<td>▪ 2 safety washers</td>
</tr>
<tr>
<td></td>
<td>▪ 2 flat washers</td>
</tr>
<tr>
<td>P500T0002</td>
<td>Technical Note with instructions on unpacking and packing P-5xx stages</td>
</tr>
<tr>
<td>PZ240EK</td>
<td>Short instructions for piezo positioning systems</td>
</tr>
<tr>
<td>Only for P-56x.3CL models:</td>
<td></td>
</tr>
<tr>
<td>E71000211</td>
<td>Adapter cable, Sub-D Mix 25W3 to LEMO, 1 m</td>
</tr>
<tr>
<td></td>
<td>(for connection to E-500 systems)</td>
</tr>
</tbody>
</table>
3.5 Recommended Piezo Controllers

To operate a P-56x, you need a piezo controller. The device is selected depending on the type of application. The table below lists suitable controllers (X = suitable).

<table>
<thead>
<tr>
<th>Controller</th>
<th>Channels</th>
<th>P-56x.3CD</th>
<th>P-56x.3DD</th>
<th>P-56x.3CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-500 modular piezo controller with E-509.C3A control module for capacitive sensors and E-503 3-channel amplifier Optional: E-517 interface and display module</td>
<td>3</td>
<td>–</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>E-500 modular piezo controller with E-509.C3A control module for capacitive sensors and 3× E-505 1-channel high-performance amplifier Optional: E-517 interface and display module</td>
<td>3</td>
<td>–</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>E-712 digital piezo controller, modular system for up to 6 axes</td>
<td>3 / 6</td>
<td>X</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>E-725 digital piezo controller for up to 3 axes</td>
<td>3</td>
<td>X</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>E-761 digital piezo controller for up to 3 axes, PCI card</td>
<td>3</td>
<td>X</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

3.6 Technical Features

3.6.1 PICMA® Piezo Actuators

P-56x stages are driven by PICMA® piezo actuators. PICMA® actuators have all-ceramic insulation and are therefore far superior to conventional actuators in respect to performance and lifetime. The monolithic piezoceramic block is protected against humidity and failure due to increased leakage current by a ceramic insulation layer. In this way, an especially high reliability is achieved even under extreme ambient conditions. In contrast to motorized drives, there are no rotating parts or friction. The piezo actuators are therefore backlash-, maintenance- and wear-free.
3.6.2 Flexure Guides

P-56x stages have flexure guides (flexures) for frictionless motion and high guiding accuracies.

A flexure guide is an element which is free from static and sliding friction. It is based on the elastic deformation (bending) of a solid (e.g. steel) and does not have any rolling or sliding parts. Flexure elements have a high stiffness and load capacity. Flexure guides are maintenance- and wear-free. They are 100 % vacuum compatible, function in a wide temperature range and do not require any lubricants.

3.6.3 Capacitive Sensors

Capacitive sensors measure the position directly on the moving platform (direct metrology) and work without contact. Neither friction nor hysteresis interferes with the motion, which allows excellent linearity values to be achieved in combination with the high position resolution. In connection with suitable electronics, capacitive sensors achieve the best resolution, stability and bandwidth.

3.6.4 ID Chip (Only Models With Sub-D Connector)

An ID chip is located in the Sub-D connector of the stage. When the stage is calibrated at the factory with digital electronics, the calibration data is saved together with specific product information on the ID chip. When switched on, digital electronics read the data from the ID chip of the connected stage. Stages whose ID chip contains the calibration data can therefore be connected to any suitable digital electronics without a new calibration.

For more information on the ID chip, see the manual of the controller used.
4 Unpacking

NOTICE

Mechanical overload from incorrect handling!
An impermissible mechanical overload of the moving platform of the P-56x can cause damage to the piezo actuators, sensors and flexure joints of the P-56x as well as losses of accuracy.

- Only ship the P-56x in the original packaging.
- Only hold the P-56x externally by the base body.

The P-56x is delivered with installed transport lock. The following figures serve as examples and can differ from your stage model.

Figure 4: Exemplary view: Stage with transport lock (support frame marked with arrow) for protecting the moving platform

Tools and accessories

- Suitable screwdriver

Unpacking the P-56x

1. Unpack the P-56x with care.
2. Compare the contents against the items covered by the contract and against the packing list. If parts are incorrectly supplied or missing, contact PI immediately.
4 Unpacking

3. Inspect the contents for signs of damage. If you notice signs of damage, contact PI immediately.

4. Remove the transport lock:
 a) Place the P-56x on a surface with the support frame facing downwards.

 ![Image of P-56x with focus on screws](image)

 b) Release the four plastic screws with a screwdriver. In the following figure, one of the screws is marked with an arrow.

 ![Image of screw being removed](image)

 c) Remove the plastic screws and the support frame.

5. Keep all packaging materials and the transport lock in case the product needs to be transported again later.
5 Installation

In this Chapter

General Notes on Installation .. 17
Connecting the P-56x to the Protective Earth Conductor ... 19
Mounting the P-56x ... 21
Affixing the Load .. 23
Connecting the Adapter Cable to the P-56x (Only P-56x.3CL Models) 25

5.1 General Notes on Installation

CAUTION

Dangerous voltage and residual charge on piezo actuators!

The P-56x is driven by piezo actuators. Temperature changes and compressive stresses can induce charges in piezo actuators. After being disconnected from the electronics, piezo actuators can also stay charged for several hours. Touching or short-circuiting the contacts in the connector of the P-56x can lead to minor injuries. In addition, the piezo actuators can be destroyed by an abrupt contraction.

➢ Do not open the P-56x.
➢ Discharge the piezo actuators of the stage before installation:
 Connect the stage to the switched-off PI controller, which is equipped with an internal discharge resistor.
➢ Do not pull out the connector from the electronics during operation.

For stages with Sub-D connector:
Touching the contacts in the connector can lead to an electric shock (max. 130 V DC) and minor injuries.
➢ Do not touch the contacts in the connector.
➢ Secure the connector of the stage with screws against being pulled out of the controller.
NOTICE

Mechanical overload from incorrect handling!
An impermissible mechanical overload of the moving platform of the P-56x can cause damage to the piezo actuators, sensors and flexure joints of the P-56x as well as losses of accuracy.
- Only hold the P-56x externally by the base body.

NOTICE

Damage from unsuitable cables!
Unsuitable cables can damage the stage and the electronics.
- Only use cables provided by PI for connecting the P-56x to the electronics.

NOTICE

Damage from incorrect mounting!
Incorrect mounting of the P-56x or incorrectly mounted parts can damage the P-56x.
- Only mount the P-56x and the loads on the mounting fixtures (holes) intended for this purpose.

NOTICE

Damage due to incorrectly tightened screws!
Incorrectly tightened screws can cause damage.
- Observe the torque range (p. 43) given for the screws used during installation.

INFORMATION

Extended cables can reduce the positioning accuracy of the P-56x or affect the sensor processing by the electronics.
- Do not use cable extensions. If you need longer cables, contact our customer service department (p. 37).
5.2 Connecting the P-56x to the Protective Earth Conductor

INFORMATION

In the case of P-56x stages with Sub-D connectors, ground loops can occur when the stage is grounded via its protective earth connector as well as by the shield of the connection cable for the electronics.

- If a ground loop occurs, contact our customer service department (p. 37).

INFORMATION

- Observe the applicable standards for mounting the protective earth conductor.

The P-56x is equipped with an M4 hole for fastening the protective earth conductor. This hole is located next to the cable exit and is marked with the protective earth conductor symbol (see "Dimensions", p. 42).

Prerequisite

- You have read and understood the General Notes on Installation (p. 17).
- The stage is not connected to the electronics.

Tools and accessories

- Suitable protective earth conductor: Cross-sectional area of the cable \(\geq 0.75 \text{ mm}^2 \)
- Supplied M4 protective earth screw set (p. 12) for connecting the protective earth conductor
- Suitable screwdriver
Connecting the P-56x to the protective earth conductor

1. If necessary, fasten a suitable cable lug to the protective earth conductor.

2. Fasten the cable lug of the protective earth conductor using the M4 screw on the protective earth connection of the P-56x as shown in the profile view.

3. Tighten the M4 screw with a torque of 1.2 Nm to 1.5 Nm.

4. Make sure that the contact resistance at all connection points relevant for mounting the protective earth conductor is <0.1 Ω at 25 A.
5.3 Mounting the P-56x

NOTICE

Warping of the P-56x due to mounting on uneven surfaces!
Mounting the P-56x on an uneven surface can warp the P-56x. Warping reduces the accuracy.

- Mount the P-56x on an even surface. The recommended evenness of the surface is ≤20 µm.
- For applications with great temperature changes:
 Only mount the P-56x on surfaces that have the same or similar thermal expansion properties as the P-56x.

NOTICE

Tensile stress on piezo actuator with vertical mounting!
When the stage is mounted vertically, tensile stress can result in particular alignments that reduces the preload of the piezo actuator and thus destroys it.

- If you want to mount the P-56x vertically, contact our customer service department (p. 37).

NOTICE

Protruding screw heads!
Protruding screw heads can damage the P-56x.

- Ensure that the screw heads do not protrude from counter-sunk holes so that they do not interfere with the stage motion.
Figure 6: Mounting holes in the base body

Prerequisite

- You have read and understood the General Notes on Installation (p. 17).

Tools and accessories

- Screws of appropriate size and length (see "Dimensions", p. 42)
- Suitable tools

Mounting the stage on a surface

1. Position the stage on an even surface.

2. Fasten the stage to the mounting holes (see figure) with suitable screws. Observe the specified torque range (p. 43) while doing so.
5.4 Affixing the Load

NOTICE

Mechanical overload due to high torques and high loads!
When affixing the load, high torques and high loads can overload the moving platform of the P-56x. Mechanical overload can cause damage to the piezo actuators, sensors and flexure joints of the P-56x and lead to losses in accuracy.

- Observe the torque range (p. 43) given for the screws used during installation.
- Avoid torques >1.5 Nm on the moving platform.
- Do not exceed the maximum permissible stress and load capacities according to the specifications (p. 39).

NOTICE

Warping of the P-56x due to affixing of loads with uneven contact surface!
Affixing loads with an uneven contact surface can warp the P-56x. Warping reduces the accuracy.

- Only affix loads on the P-56x whose contact surface with the moving platform of the stage has an evenness of at least 20 \(\mu \)m.
- For applications with great temperature changes:
 Only affix loads on the P-56x that have the same or similar thermal expansion properties as the P-56x.

NOTICE

Center of load at unsuitable position!
If the center of load is located far outside of the moving platform (e. g. high set-ups and long levers), the P-56x can be damaged from high strain on the flexure guides, high torques and oscillations.

- If the center of the load to be affixed is far above or to the side of the moving platform, adjust the controller settings before start-up or contact our customer service department (p. 37).
NOTICE

Screws that are too long!
The P-56x can be damaged by screws that are too long.

- Note the depth of the mounting holes in the moving platform (p. 42).
- Only use screws of the correct length for the respective mounting holes.

INFORMATION

The arrows in the figures (see "Dimensions", p. 42) show the positive direction of motion.

Center of load at the optimum position:

![Figure 7: Example of an optimally affixed load](image)

Center of load at an unsuitable position:

![Figure 8: High set-up and center of load far above the moving platform](image)
Prerequisite
✓ You have read and understood the General Notes on Installation (p. 17).

Tools and accessories
- Screws of appropriate size and length (p. 42)
- Suitable tools

Affixing the Load
- Only affix loads to the threaded holes (p. 42) intended for this purpose and with suitable screws. Observe the specified torque range (p. 43) while doing so.
- Affix the load so that it is centered and that the center of load is on the moving platform.

5.5 Connecting the Adapter Cable to the P-56x (Only P-56x.3CL Models)

Prerequisites
✓ The adapter cable is not connected to the electronics.

Tools and accessories
- Supplied E71000211 adapter cable (p. 12)

Connecting the adapter cable to the P-56x
- Connect the Sub-D Mix connector (m) of the P-56x to the Sub-D Mix connector (f) of the adapter cable.
6 Start-Up and Operation

In this Chapter

General Notes on Start-Up and Operation ... 27
Operating the P-56x .. 29
Discharging the P-56x ... 30

6.1 General Notes on Start-Up and Operation

CAUTION

Risk of electric shock if the protective earth conductor is not connected!
If a protective earth conductor is not or not properly connected, dangerous touch voltages can occur on the P-56x in the case of malfunction or failure of the system. If touch voltages exist, touching the P-56x can result in minor injuries from electric shock.

- Connect the P-56x to a protective earth conductor (p. 19) before start-up.
- Do not remove the protective earth conductor during operation.
- If the protective earth conductor has to be removed temporarily (e. g. in the case of modifications), reconnect the P-56x to the protective earth conductor before starting it up again.

NOTICE

Destruction of the piezo actuator by electric flashovers!
The use of the P-56x in environments that increase the electrical conductivity can lead to the destruction of the piezo actuator by electric flashovers. Electric flashovers can be caused by moisture, high humidity, liquids and conductive materials such as metal dust. In addition, electric flashovers can also occur in certain air pressure ranges due to the increased conductivity of the air.

- Avoid operating the P-56x in environments that can increase the electric conductivity.
- Only operate the P-56x within the permissible ambient conditions and classifications (p. 41).
NOTICE

Reduced lifetime of the piezo actuator due to permanently high voltage!
The permanent application of a high static voltage to piezo actuators leads to a considerable reduction in the lifetime of the piezo ceramics of the actuator.

- When the P-56x is not used but the controller remains switched on to ensure temperature stability, discharge the P-56x (p. 30).

NOTICE

Operating voltages that are too high or incorrectly connected!
Operating voltages that are too high or incorrectly connected can cause damage to the P-56x.

- Only operate the P-56x with controllers/drivers and original accessories from PI.
- Do not exceed the operating voltage range (p. 40) for which the P-56x is specified.
- Only operate the P-56x when the operating voltage is properly connected; see "Pin Assignment" (p. 44).

NOTICE

Uncontrolled oscillation!
Oscillations can cause irreparable damage to the stage. Oscillations are indicated by a humming and can result from the following causes:

- A change in the load and/or dynamics requires the servo-control parameters to be adjusted.
- The stage is operated near its resonant frequency.

If you notice oscillations:

- In closed-loop operation, immediately switch off the servo mode.
- In open-loop operation, immediately stop the stage.

INFORMATION

The arrows in the figures (see "Dimensions", p. 42) show the positive direction of motion.
Information

Systems are calibrated at the factory to achieve optimum positioning accuracy. Replacing the system components will cause a loss in positioning accuracy in the following cases:

- ID chip (p. 14) of the stage does not contain any calibration data
- Stage is connected via LEMO connectors to the controller (no ID chip lines present)

When connecting the stage, observe the assignment of the stage axes to the controller channels, which is given by the calibration label of the controller.

If the positioning accuracy is reduced after the P-56x, the controller, an extension cable or an adapter cable has been replaced:

- Perform a recalibration of the axis displacement (see controller manual) or contact our customer service department (p. 37).

Information

Sound and vibration (e.g. footfall, impacts) can be transmitted to the stage and can affect its performance with regard to position stability.

- Avoid transmitting sound and vibration while the stage is being operated.

6.2 Operating the P-56x

Prerequisite

- If a P-56x.3CL stage is to be operated with a controller with LEMO sockets: The E71000211 adapter cable is connected to the stage (p. 25).

Operating the P-56x

- Follow the instructions in the manual of the used controller for start-up and operation of the P-56x.
6.3 Discharging the P-56x

The P-56x must be discharged in the following cases:

- Before installation
- If the P-56x is not used but the controller remains switched on to ensure temperature stability
- Before demounting (e.g. before cleaning and transporting the P-56x and for modifications)

The P-56x is discharged through the internal discharge resistor of the controller from PI.

Discharging a P-56x that is connected to the controller

In closed-loop operation:

1. Switch off the servo mode on the controller.
2. Set the piezo voltage to 0 V on the controller.

In open-loop operation:

- Set the piezo voltage to 0 V on the controller.

Discharging a P-56x that is not connected to the controller

- Connect the stage to the switched-off controller from PI.
7 Maintenance

In this Chapter

General Notes on Maintenance ... 31
Packing the P-56x for Transport ... 31
Cleaning the P-56x .. 33

7.1 General Notes on Maintenance

NOTICE

Misalignment from loosening screws!
The P-56x is maintenance-free and achieves its positioning accuracy as a result of the optimum alignment of mechanical components and piezo actuators. Loosened screws cause a loss in positioning accuracy.

- Only loosen screws according to the instructions in this manual.
- Do not open the P-56x.

7.2 Packing the P-56x for Transport

NOTICE

Mechanical overload from incorrect handling!
An impermissible mechanical overload of the moving platform of the P-56x can cause damage to the piezo actuators, sensors and flexure joints of the P-56x as well as losses of accuracy.

- Only ship the P-56x in the original packaging.
- Only hold the P-56x externally by the base body.
The following figures serve as examples and can differ from your stage model.

Tools and accessories

- Original packaging
- Transport lock, included in delivery, consisting of:
 - Support frame
 - 4 plastic screws
- Suitable screwdriver

Packing the P-56x

1. Attach the transport lock:

 a) Place the support frame on a surface.
 b) Place the stage with its top side facing downwards on the support frame.

 c) Align the stage so that the mounting holes in the stage are above the mounting holes in the support frame.
d) Fasten the support frame to the mounting holes of the stage with the four plastic screws. In the following figure, one of the screws is marked with an arrow.

2. Pack the stage in the original packaging.

7.3 Cleaning the P-56x

Prerequisites

✓ You have discharged the piezo actuators of the P-56x (p. 30).
✓ You have disconnected the P-56x from the controller.

Cleaning the P-56x

➢ Clean the surfaces of the P-56x with a cloth that is slightly dampened with a mild cleanser or disinfectant (e.g. ethanol or isopropanol).
➢ Do not do any ultrasonic cleaning.
8 Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Causes</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No or limited motion</td>
<td>The cable is not connected correctly</td>
<td>➢ Check the cable connections.</td>
</tr>
<tr>
<td>Excessive load</td>
<td></td>
<td>➢ Do not exceed the maximum permissible stress and load capacities according to the specifications (p. 39).</td>
</tr>
<tr>
<td>Zero shift of the sensor</td>
<td>for the following reasons:</td>
<td>➢ Perform a zero-point adjustment of the sensor (see controller manual).</td>
</tr>
<tr>
<td></td>
<td>▪ Load applied in direction of motion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Ambient/operating temperature of the stage far above or below calibration temperature (21 °C to 24 °C)</td>
<td></td>
</tr>
<tr>
<td>Reduced positioning accuracy</td>
<td>Warping of the base body or the moving platform</td>
<td>➢ Only mount the P-56x on surfaces with the following characteristics:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>➢ Evenness of at least 20 μm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>➢ The thermal expansion properties are similar to those of the P-56x (e. g. surfaces made of aluminum).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>➢ Only affix loads with the following characteristics on the P-56x:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>➢ The contact surface of the load has an evenness of at least 20 μm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>➢ The thermal expansion properties are similar to those of the P-56x (e. g. loads made of aluminum).</td>
</tr>
<tr>
<td>Problem</td>
<td>Possible Causes</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>P-56x, controller, extension cable or adapter cable has been replaced</td>
<td>When stages, whose ID chip (p. 14) does not contain any calibration data, or LEMO connectors (no ID chip lines present) are used, the axis displacement has to be recalibrated after the P-56x, the controller, an extension cable or an adapter cable has been replaced.</td>
<td>➢ Perform a recalibration of the axis displacement (see controller manual) or contact our customer service department (p. 37).</td>
</tr>
<tr>
<td>Axes were mixed up during connection (only with LEMO connectors)</td>
<td>➢ Observe the assignment of the axes when connecting the stage to the controller. This assignment is indicated by labels on the devices.</td>
<td></td>
</tr>
<tr>
<td>The stage starts oscillating or positions inaccurately</td>
<td>Servo-control parameters incorrectly set because e.g. the load was changed</td>
<td>1. Immediately switch off the servo mode of the corresponding stage axes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Check the settings of the servo-control parameters on the controller.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Adjust the servo-control parameters on the controller according to the load change.</td>
</tr>
<tr>
<td>Open-loop operation near the resonant frequency</td>
<td>➢ In open-loop operation, only operate the stage with a frequency that is below the resonant frequency.</td>
<td></td>
</tr>
</tbody>
</table>

If the problem that occurred with your system is not listed in the table above or cannot be solved as described, contact our customer service department (p. 37).
For inquiries and orders, contact your PI sales engineer or send us an e-mail (info@pi.ws).

If you have questions concerning your system, have the following information ready:

- Product codes and serial numbers of all products in the system
- Firmware version of the controller (if present)
- Version of the driver or the software (if present)
- Operating system on the PC (if present)

The latest versions of the user manuals are available for download (p. 3) on our website.
10 Technical Data

In this Chapter

Specifications .. 39
Ambient Conditions and Classifications ... 41
Dimensions .. 42
Torque for Stainless Steel Screws (A2-70) ... 43
Pin Assignment... 44

10.1 Specifications

10.1.1 Data Table

<table>
<thead>
<tr>
<th></th>
<th>P-561.3CD</th>
<th>P-562.3CD</th>
<th>P-563.3CD</th>
<th>P-561.3DD</th>
<th>Unit</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI-Mars XYZ piezo-nanopositioning system, closed-loop travel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motion and positioning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated sensor</td>
<td>Capacitive</td>
<td>Capacitive</td>
<td>Capacitive</td>
<td>Capacitive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 × 100 × 100</td>
<td>200 × 200 × 200</td>
<td>300 × 300 × 300</td>
<td>45 × 45 × 15, direct drive</td>
<td>µm</td>
<td></td>
</tr>
<tr>
<td>Open-loop travel, -20 to 120 V</td>
<td>150 × 150 × 150</td>
<td>300 × 300 × 300</td>
<td>340 × 340 × 340</td>
<td>58 × 58 × 18</td>
<td>µm</td>
<td>min. (+20 % / -0 %)</td>
</tr>
<tr>
<td>Open-loop resolution</td>
<td>0.2</td>
<td>0.4</td>
<td>0.5</td>
<td>0.1</td>
<td>nm</td>
<td>typ.</td>
</tr>
<tr>
<td>Closed-loop resolution</td>
<td>0.8</td>
<td>1</td>
<td>2</td>
<td>0.2</td>
<td>nm</td>
<td>typ.</td>
</tr>
<tr>
<td>Linearity error</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01*</td>
<td>%</td>
<td>typ.</td>
</tr>
<tr>
<td>Repeatability in X / Y / Z</td>
<td>2 / 2 / 2</td>
<td>2 / 2 / 4</td>
<td>2 / 2 / 4</td>
<td>2 / 2 / 2</td>
<td>nm</td>
<td>typ.</td>
</tr>
<tr>
<td>Pitch in X, Y</td>
<td>±1</td>
<td>±2</td>
<td>±2</td>
<td>±3</td>
<td>µrad</td>
<td>typ.</td>
</tr>
<tr>
<td>Cross talk βx, βy (motion in Z)</td>
<td>±15</td>
<td>±20</td>
<td>±25</td>
<td>±3</td>
<td>µrad</td>
<td>typ.</td>
</tr>
<tr>
<td>Yaw in X, Y</td>
<td>±6</td>
<td>±10</td>
<td>±10</td>
<td>±3</td>
<td>µrad</td>
<td>typ.</td>
</tr>
<tr>
<td>Flatness in X, Y</td>
<td>±15</td>
<td>±20</td>
<td>±25</td>
<td>±10</td>
<td>nm</td>
<td>typ.</td>
</tr>
<tr>
<td>Cross talk in X, Y (motion in Z)</td>
<td>±30</td>
<td>±50</td>
<td>±50</td>
<td>±20</td>
<td>nm</td>
<td>typ.</td>
</tr>
<tr>
<td>Mechanical properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unloaded resonant frequency in X / Y / Z</td>
<td>190 / 190 / 380</td>
<td>160 / 160 / 315</td>
<td>140 / 140 / 250</td>
<td>920 / 920 / 1050</td>
<td>Hz</td>
<td>±20 %</td>
</tr>
<tr>
<td>Resonant frequency at 100 g in X / Y / Z</td>
<td>145 / 145 / 275</td>
<td>120 / 120 / 215</td>
<td>110 / 110 / 170</td>
<td>860 / 860 / 950</td>
<td>Hz</td>
<td>±20 %</td>
</tr>
<tr>
<td>Resonant frequency at 330 g in X / Y / Z</td>
<td>140 / 140 / 300</td>
<td>130 / 130 / 195</td>
<td>110 / 110 / 170</td>
<td>500 / 500 / 470</td>
<td>Hz</td>
<td>±20 %</td>
</tr>
<tr>
<td>Push force capacity in motion direction in X / Y / Z</td>
<td>200 / 200 / 50</td>
<td>120 / 120 / 50</td>
<td>100 / 100 / 50</td>
<td>200 / 200 / N</td>
<td>max.</td>
<td></td>
</tr>
<tr>
<td>Pull force capacity in motion direction in X / Y / Z</td>
<td>30 / 30 / 30</td>
<td>N</td>
<td>max.</td>
</tr>
<tr>
<td>Load capacity</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>N</td>
<td>max.</td>
</tr>
</tbody>
</table>
10.1.2 Maximum Ratings

P-56x stages are designed for the following operating parameters:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Maximum Operating Voltage</th>
<th>Maximum Operating Frequency (Unloaded)</th>
<th>Maximum Power Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-561.3CD P-561.3CL</td>
<td>–20 to +120 V</td>
<td>63 Hz (in X and Y) 126 Hz (in Z)</td>
<td>15 W (in X and Y) 30 W (in Z)</td>
</tr>
<tr>
<td>P-561.3DD</td>
<td>–20 to +120 V</td>
<td>306 Hz (in X and Y) 350 Hz (in Z)</td>
<td>34 W (in X and Y) 17 W (in Z)</td>
</tr>
<tr>
<td>P-562.3CD P-562.3CL</td>
<td>–20 to +120 V</td>
<td>53 Hz (in X and Y) 105 Hz (in Z)</td>
<td>21 W (in X and Y) 43 W (in Z)</td>
</tr>
<tr>
<td>P-563.3CD P-563.3CL</td>
<td>–20 to +120 V</td>
<td>46 Hz (in X and Y) 83 Hz (in Z)</td>
<td>21 W (in X and Y) 43 W (in Z)</td>
</tr>
</tbody>
</table>
10.2 Ambient Conditions and Classifications

The following ambient conditions and classifications must be observed for the P-56x:

<table>
<thead>
<tr>
<th>Area of application</th>
<th>For indoor use only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum altitude</td>
<td>2000 m</td>
</tr>
<tr>
<td>Air pressure</td>
<td>1100 hPa to 0.1 hPa (corresponds to roughly 825 Torr to 0.075 Torr)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>Highest relative humidity 80 % for temperatures up to 31 °C Decreasing linearly to 50 % relative humidity at 40 °C</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>–20 °C to 80 °C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>–20 °C to 80 °C</td>
</tr>
<tr>
<td>Transport temperature</td>
<td>–25 °C to 85 °C</td>
</tr>
<tr>
<td>Overvoltage category</td>
<td>II</td>
</tr>
<tr>
<td>Protection class</td>
<td>I</td>
</tr>
<tr>
<td>Degree of pollution</td>
<td>1</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP20</td>
</tr>
</tbody>
</table>
10.3 Dimensions

Dimensions in mm. Note that the decimal places are separated by a comma in the drawings.

Figure 10: P-56x.3CD and P-56x.3CL
10.4 Torque for Stainless Steel Screws (A2-70)

<table>
<thead>
<tr>
<th>Screw Size</th>
<th>Minimum Torque</th>
<th>Maximum Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>M6</td>
<td>4 Nm</td>
<td>6 Nm</td>
</tr>
<tr>
<td>M5</td>
<td>2.5 Nm</td>
<td>3.5 Nm</td>
</tr>
<tr>
<td>M4</td>
<td>1.5 Nm</td>
<td>2.5 Nm</td>
</tr>
<tr>
<td>M3</td>
<td>0.8 Nm</td>
<td>1.1 Nm</td>
</tr>
<tr>
<td>M2.5</td>
<td>0.3 Nm</td>
<td>0.4 Nm</td>
</tr>
<tr>
<td>M2</td>
<td>0.15 Nm</td>
<td>0.2 Nm</td>
</tr>
<tr>
<td>M1.6</td>
<td>0.06 Nm</td>
<td>0.12 Nm</td>
</tr>
</tbody>
</table>

Figure 11: P-561.3DD
10.5 Pin Assignment

Sub-D Mix connector 25W3
Only for P-56x.3CD/.3DD:

Figure 12: Sub-D Mix connector 25W3: Front side with connections

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 inner conductor</td>
<td>Output</td>
<td>Probe sensor signal, channel 2 (nonmoving part of the capacitive sensor)</td>
</tr>
<tr>
<td>A1 outer conductor</td>
<td>GND</td>
<td>Shield of Probe sensor signal, channel 2</td>
</tr>
<tr>
<td>A2 inner conductor</td>
<td>Output</td>
<td>Probe sensor signal, channel 3 (nonmoving part of the capacitive sensor)</td>
</tr>
<tr>
<td>A2 outer conductor</td>
<td>GND</td>
<td>Shield of Probe sensor signal, channel 3</td>
</tr>
<tr>
<td>A3 inner conductor</td>
<td>Output</td>
<td>Probe sensor signal, channel 1 (nonmoving part of the capacitive sensor)</td>
</tr>
<tr>
<td>A3 outer conductor</td>
<td>GND</td>
<td>Shield of Probe sensor signal, channel 1</td>
</tr>
<tr>
<td>1</td>
<td>Input</td>
<td>Target sensor signal, channel 2 (movable part of the capacitive sensor)</td>
</tr>
<tr>
<td>2</td>
<td>Input</td>
<td>Target sensor signal, channel 3 (movable part of the capacitive sensor)</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground of ID chip</td>
</tr>
<tr>
<td>4</td>
<td>Bidirectional</td>
<td>Data line for ID chip</td>
</tr>
<tr>
<td>5</td>
<td>Free</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>Free</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>Free</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>Input</td>
<td>Piezo voltage +, channel 3</td>
</tr>
<tr>
<td>9</td>
<td>Input</td>
<td>Piezo voltage +, channel 2</td>
</tr>
<tr>
<td>10</td>
<td>Input</td>
<td>Piezo voltage +, channel 1</td>
</tr>
</tbody>
</table>
Pin, Signal, Function Table

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Input</td>
<td>Target sensor signal, channel 1 (movable part of the capacitive sensor)</td>
</tr>
<tr>
<td>12</td>
<td>GND</td>
<td>Shield of Target sensor signal, channel 2</td>
</tr>
<tr>
<td>13</td>
<td>GND</td>
<td>Shield of Target sensor signal, channel 3</td>
</tr>
<tr>
<td>14</td>
<td>Free</td>
<td>–</td>
</tr>
<tr>
<td>15</td>
<td>Free</td>
<td>–</td>
</tr>
<tr>
<td>16</td>
<td>Free</td>
<td>–</td>
</tr>
<tr>
<td>17</td>
<td>Free</td>
<td>–</td>
</tr>
<tr>
<td>18</td>
<td>Free</td>
<td>–</td>
</tr>
<tr>
<td>19</td>
<td>Input</td>
<td>Piezo voltage –, channel 3</td>
</tr>
<tr>
<td>20</td>
<td>Input</td>
<td>Piezo voltage –, channel 2</td>
</tr>
<tr>
<td>21</td>
<td>Input</td>
<td>Piezo voltage –, channel 1</td>
</tr>
<tr>
<td>22</td>
<td>GND</td>
<td>Shield of Target sensor signal, channel 1</td>
</tr>
</tbody>
</table>

LEMO coaxial connector

Only for P-56x.3CL (one PZT, P and T connector each per axis):

Connectors

- **PZT**
- **P**
- **T**

![LEMO connectors: PZT, P and T](Image)

LEMO coaxial connector Table

<table>
<thead>
<tr>
<th>Connector</th>
<th>Signal</th>
<th>Function</th>
<th>Connector Shell</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Output</td>
<td>Probe sensor signal (nonmoving part of the capacitive sensor)</td>
<td>Cable shield</td>
</tr>
<tr>
<td>T</td>
<td>Input</td>
<td>Target sensor signal (movable part of the capacitive sensor)</td>
<td>Cable shield</td>
</tr>
<tr>
<td>PZT</td>
<td>Input</td>
<td>Piezo voltage</td>
<td>Ground</td>
</tr>
</tbody>
</table>
In accordance with the applicable EU law, electrical and electronic equipment may not be disposed of with unsorted municipal wastes in the member states of the EU.

When disposing of your old equipment, observe the international, national and local rules and regulations.

To meet the manufacturer’s product responsibility with regard to this product, Physik Instrumente (PI) GmbH & Co. KG ensures environmentally correct disposal of old PI equipment that was first put into circulation after 13 August 2005, free of charge.

If you have old PI equipment, you can send it postage-free to the following address:

Physik Instrumente (PI) GmbH & Co. KG
Auf der Römerstr. 1
D-76228 Karlsruhe, Germany
12 EC Declaration of Conformity

For the P-56x, an EC Declaration of Conformity has been issued in accordance with the following European directives:

2006/95/EC, Low Voltage Directive
2004/108/EC, EMC Directive
2011/65/EU, RoHS Directive

The applied standards certifying the conformity are listed below.

Electromagnetic Immunity: EN 61000-6-1:2007
Safety (Low Voltage Directive): EN 61010-1:2010